Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$(K F)_{4} \cdot \mathbf{4 G a M e}_{3}$

Harald Krautscheid* and Oliver Kluge

Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103
Leipzig, Germany
Correspondence e-mail: krautscheid@rz.uni-leipzig.de
Received 14 July 2007; accepted 2 October 2007
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{K}-\mathrm{F})=0.001 \AA$; R factor $=0.014 ; w R$ factor $=0.035$; data-to-parameter ratio $=21.6$.

In the structure of tetrakis(potassium fluoridotrimethylgallium), or tetra- μ_{4}-fluorido-dodecamethyltetrapotassiumtetragallium, $(\mathrm{KF})_{4} \cdot 4 \mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ or $\left[\mathrm{K}_{4} \mathrm{Ga}_{4}\left(\mathrm{CH}_{3}\right)_{12} \mathrm{~F}_{4}\right]$, the F atoms of the $\mathrm{K}_{4} \mathrm{~F}_{4}$ cube coordinate to the $\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ groups. The crystallographic site symmetry of the tetramer is $23(T)$.

Related literature

For related literature, see: Elschenbroich (2003); Pauer \& Sheldrick (1993); Starowieyski et al. (2000); Weiss et al. (1970); Wilson \& Dehnicke (1974).

Experimental

Crystal data

$\left[\mathrm{K}_{4} \mathrm{Ga}_{4}\left(\mathrm{CH}_{3}\right)_{12} \mathrm{~F}_{4}\right]$
$M_{r}=691.69$
Cubic, $F \overline{4} 3 c$
$a=17.760(2) \AA$
$V=5601.8(11) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=4.42 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.48 \times 0.40 \times 0.37 \mathrm{~mm}$

Data collection

Stoe IPDS 2T diffractometer
2577 measured reflections Absorption correction: numerical (X-RED; Stoe \& Cie, 2001)

$$
453 \text { independent reflections }
$$

$$
376 \text { reflections with } I>2 \sigma(I)
$$

$$
T_{\min }=0.225, T_{\max }=0.292
$$

$$
R_{\mathrm{int}}=0.045
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.035$
$S=1.10$
453 reflections
21 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.13$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Absolute structure: Flack (1983),
with 195 Friedel pairs
Flack parameter: 0.02 (2)

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{K} 1-\mathrm{F} 1$	$2.6501(10)$	$\mathrm{Ga} 1-\mathrm{C} 1$	$1.982(2)$
$\mathrm{F} 1-\mathrm{Ga} 1$	$1.9528(18)$		
$\mathrm{F} 1-\mathrm{K} 1-\mathrm{F} 1^{\mathrm{i}}$	$81.31(6)$	$\mathrm{F} 1-\mathrm{Ga} 1-\mathrm{C} 1$	$103.38(8)$
$\mathrm{K} 1-\mathrm{F} 1-\mathrm{K} 1^{\mathrm{i}}$	$98.07(5)$	$\mathrm{C}^{\mathrm{ii}}-\mathrm{Ga} 1-\mathrm{C} 1$	$114.81(6)$

Symmetry codes: (i) $x,-y+1,-z+1$; (ii) z, x, y.

Data collection: X-AREA (Stoe \& Cie, 2005); cell refinement: X-AREA; data reduction: $X-A R E A$ and X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SF3049).

References

Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.
Elschenbroich, C. (2003). Organometallchemie, 4th ed., pp. 123-124. Wiesbaden: Teubner.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Pauer, F. \& Sheldrick, G. M. (1993). Acta Cryst. C49, 1283-1284.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Starowieyski, K. B., Chwojnowski, A., Jankowski, K., Lewinski, J. \& Zachara, J. (2000). Appl. Organomet. Chem. 14, 616-622.

Stoe \& Cie (2001). X-RED. Version 1.22. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2005). X - $A R E A$. Stoe \& Cie, Darmstadt, Germany.
Weiss, E., Hoffmann, K. \& Gruetzmacher, H. F. (1970). Chem. Ber. 103, 11901197.

Wilson, I. L. \& Dehnicke, K. (1974). J. Organomet. Chem. 67, 229-235.

supplementary materials

(KF) $\mathbf{4} \cdot \mathbf{4 G a M e} 3$

H. Krautscheid and O. Kluge

Comment

The potassium fluoride adduct $(\mathrm{KF})_{4} \cdot 4 \mathrm{GaMe}_{3}$, (1), is a suitable intermediate in the purification of GaMe_{3}, since this reactive compound can be liberated by simply heating (1) in vacuum (Starowieyski et al., 2000). (1) crystallizes in space group $\mathrm{F} 43 c, z=8$. The K and F atoms in (1) form a heterocubane structure with the fluorine atoms coordinating to the gallium atoms of the $\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ groups. This extends the number of valence electrons of the gallium atoms from six to a complete octet and increases the stability significantly (Elschenbroich, 2003). The first report on the synthesis of the $\mathrm{KF}-\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ complex appeared in 1974 (Wilson \& Dehnicke, 1974). Originally the structure of (1) was reported in space group $P \overline{4} 3 m$, $z=1$ (Starowieyski et al., 2000). However, then the carbon atom of the refined methyl group occupies a general position resulting in disorder with half occupancy. Isostructural with (1) is the potassium silanolate $\left[\mathrm{KOSi}\left(\mathrm{CH}_{3}\right)_{3}\right]_{4}$, which also has originally been characterized by powder diffraction and described in space group $P \overline{4} 3 m$ (Weiss et al., 1970); the structure analysis has been corrected after refinement in space group F43c (Pauer \& Sheldrick, 1993).

We observed reflections with non-integer Miller indices in (1), if indexing is based on the cubic primitive cell, and succeeded in refinement in space group $\mathrm{F} \overline{4} 3 c$ with twice the lattice parameter a and without disorder of the methyl group. Similar to the isostructural potassium silanolate, these reflections were obviously not recognized in the original structure analysis. This is understandable, since only few reflections $h k l$ with odd indices are allowed at low diffraction angles because of the zonal extinctions in $\mathrm{F} 43 c$, that allow Miller indices $h h l$ only for $\mathrm{h}, \mathrm{l}=2 \mathrm{n}$. Therefore only two reflections with odd indices at 2Θ angles below 20° can be observed. A data set collected at 180 K gives the same results with lattice parameter $\mathrm{a}=17.608$ (2) \AA and smaller thermal ellipsoids.

The unit cell of (1) contains eight formula units $(\mathrm{KF})_{4} \cdot 4 \mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ with the K, F and Ga atoms on the threefold axes. The $\mathrm{K}_{4} \mathrm{~F}_{4}$ heterocubane shows $\mathrm{K}-\mathrm{F}-\mathrm{K}$ angles of $98.07(5)^{\circ}$. The main difference to the description in $P \overline{4} 3 m$ is the well ordered arrangement of the methyl groups. Important geometric parameters of (1) are summerized in table 2.

Experimental

$\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ has been synthesized by reaction of GaCl_{3} with methyl lithium in diethylether. $(\mathrm{KF})_{4} \cdot 4 \mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ was prepared by complexation with potassium fluoride in toluene similar to the procedure described by Starowieyski et al. (Starowieyski et al., 2000).

Refinement

Structure solution and refinement: SHELX97 (Sheldrick, 1997)

supplementary materials

Figures

Fig. 1. Structure of $(\mathrm{KF})_{4} \cdot 4 \mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$ showing 50% probability ellipsoids (hydrogen atoms omitted).

tetra- μ_{4}-fluorido-dodecamethyltetrapotassiumtetragallium

Crystal data

$\left[\mathrm{K}_{4} \mathrm{Ga}_{4}\left(\mathrm{CH}_{3}\right)_{12} \mathrm{~F}_{4}\right]$
$M_{r}=691.69$
Cubic, $F \overline{4} 3 c$
Hall symbol: F-4c 23
$a=17.760(2) \AA$
$b=17.760(2) \AA$
$c=17.760(2) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=5601.8(11) \AA^{3}$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: plane graphite
Detector resolution: 6.67 pixels mm^{-1}
$T=295$ (2) K
rotation method, ω scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 2001)
$T_{\text {min }}=0.225, T_{\text {max }}=0.292$
2577 measured reflections

$$
\begin{aligned}
& Z=8 \\
& F_{000}=2752 \\
& D_{\mathrm{x}}=1.640 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4321 \text { reflections } \\
& \theta=2.0-29.6^{\circ} \\
& \mu=4.42 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.48 \times 0.40 \times 0.37 \mathrm{~mm}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.035$
$S=1.10$
453 reflections
21 parameters
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00081 (6)

Primary atom site location: structure-invariant direct methods

Absolute structure: Flack (1983), 195 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.02 (2)
Hydrogen site location: inferred from neighbouring
sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
K1	$0.57967(2)$	$0.57967(2)$	$0.42033(2)$	$0.0535(2)$
F1	$0.56874(6)$	$0.56874(6)$	$0.56874(6)$	$0.0508(5)$
Ga1	$0.632228(10)$	$0.632228(10)$	$0.632228(10)$	$0.03593(14)$
C1	$0.62937(17)$	$0.58083(14)$	$0.73121(12)$	$0.0619(6)$
H1A	0.5784	0.5672	0.7430	0.093^{*}
H1B	0.6484	0.6141	0.7693	0.093^{*}
H1C	0.6599	0.5363	0.7293	0.093^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	$0.0535(2)$	$0.0535(2)$	$0.0535(2)$	$-0.00930(18)$	$0.00930(18)$	$0.00930(18)$
F1	$0.0508(5)$	$0.0508(5)$	$0.0508(5)$	$-0.0086(5)$	$-0.0086(5)$	$-0.0086(5)$
Ga1	$0.03593(14)$	$0.03593(14)$	$0.03593(14)$	$-0.00040(7)$	$-0.00040(7)$	$-0.00040(7)$
C1	$0.0710(17)$	$0.0682(15)$	$0.0465(13)$	$0.0086(14)$	$0.0009(13)$	$0.0141(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

K1—F1	$2.6501(10)$	F1—Ga1	$1.9528(18)$
K1—F1			
K1—F1i	$2.6502(10)$	F1—K1 ${ }^{\text {i }}$	$2.6502(10)$
	$2.6502(10)$	F1—K1 ${ }^{\text {ii }}$	$2.6502(10)$

$\mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$	3.473 (2)
$\mathrm{K} 1-\mathrm{C} 1^{\text {iv }}$	3.473 (2)
$\mathrm{K} 1-\mathrm{C} 1^{\text {v }}$	3.473 (2)
$\mathrm{K} 1-\mathrm{Ga} 1^{\mathrm{i}}$	3.9881 (6)
K 1 - $\mathrm{Ga} 1^{\text {ii }}$	3.9881 (5)
$\mathrm{K} 1-\mathrm{Ga} 1$	3.9881 (5)
$\mathrm{K} 1-\mathrm{K} 1^{\text {i }}$	4.0023 (13)
$\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	4.0023 (13)
$\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	4.0023 (13)
F1-K1-F1 ${ }^{\text {i }}$	81.31 (6)
F1-K1-F1 ${ }^{\text {ii }}$	81.31 (6)
F1 ${ }^{\text {i }}$-K1-F1 ${ }^{\text {ii }}$	81.31 (6)
F1-K1-C1iii	95.47 (5)
F1 ${ }^{\text {i }}$-K1-C1 $1^{\text {iii }}$	168.81 (5)
F1ii ${ }^{\text {ii }} \mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$	108.91 (6)
F1-K1-C1 ${ }^{\text {iv }}$	108.91 (6)
F1 ${ }^{\text {i }}$-K1-C1 ${ }^{\text {iv }}$	95.47 (5)
F1i ${ }^{\text {ii }} \mathrm{K} 1-\mathrm{C} 1^{\text {iv }}$	168.81 (5)
C1 ${ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{C} 1^{\text {iv }}$	75.35 (7)
F1-K1-C1 ${ }^{\text {v }}$	168.81 (5)
F1 ${ }^{\text {i }}$ - $\mathrm{K} 1-\mathrm{C} 1^{\text {v }}$	108.91 (6)
F1i ${ }^{\text {ii }}$ - $10-1^{\text {v }}$	95.47 (5)
$\mathrm{C} 1 \mathrm{iii}^{\mathrm{ii}} \mathrm{K} 1-\mathrm{C} 1^{\mathrm{v}}$	75.35 (7)
$\mathrm{C} 1{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{Cl}^{\mathrm{v}}$	75.34 (7)
F1-K1-Ga1 ${ }^{\text {i }}$	100.42 (2)
F1 ${ }^{\text {i }}$ - $\mathrm{K} 1-\mathrm{Ga} 1^{\mathrm{i}}$	25.27 (3)
F1i ${ }^{\text {ii }} \mathrm{K} 1-\mathrm{Ga} 1^{\text {i }}$	100.42 (2)
C1 ${ }^{\text {iiii }}$-K1-Ga ${ }^{\text {i }}$	148.41 (5)
$\mathrm{C} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{Ga} 1^{\text {i }}$	73.72 (4)
$\mathrm{C} 1{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{Ga} 1^{\text {i }}$	90.69 (5)
F1-K1-Ga1 ${ }^{\text {ii }}$	100.42 (2)
$\mathrm{F} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{Ga} 1^{\text {ii }}$	100.42 (2)
F1i ${ }^{\text {ii }}$-K1-Ga $1^{\text {ii }}$	25.27 (3)
C1 ${ }^{\text {iiii }}$-K1-Ga1 ${ }^{\text {ii }}$	90.69 (5)
$\mathrm{C} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{Ga} 1^{\text {ii }}$	148.41 (5)
$\mathrm{C} 1{ }^{\mathrm{V}}-\mathrm{K} 1-\mathrm{Ga} 1^{\mathrm{ii}}$	73.72 (4)
$\mathrm{Ga} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{Ga} 1^{\text {ii }}$	112.761 (9)
F1-K1-Ga1	25.27 (3)
F1 ${ }^{\text {i }}$-K1-Ga1	100.42 (2)
F1i ${ }^{\text {ii }}$-K1-Ga1	100.42 (2)
C1 ${ }^{\text {iii }}-\mathrm{K} 1-\mathrm{Ga} 1$	73.72 (4)

Ga1-C1 ${ }^{\text {vii }}$	1.982 (2)
Ga1-C1 ${ }^{\text {viii }}$	1.982 (2)
$\mathrm{Ga} 1-\mathrm{C} 1$	1.982 (2)
$\mathrm{Ga} 1-\mathrm{K} 1^{\text {ii }}$	3.9882 (6)
$\mathrm{Ga} 1-\mathrm{K} 1^{\mathrm{i}}$	3.9882 (5)
C1-H1A	0.96
C1-H1B	0.96
C1-H1C	0.96
$\mathrm{C} 1^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	100.60 (5)
$\mathrm{C} 1{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 1{ }^{\text {ii }}$	149.72 (5)
C1 ${ }^{\text {v }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	133.47 (4)
$\mathrm{Ga} 1^{\mathrm{i}}$-K1-K1 1^{ii}	109.327 (10)
Ga1 ${ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	59.882 (9)
$\mathrm{Ga} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	59.884 (9)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	60.0
F1-K1-K1 $1^{\text {vi }}$	84.06 (4)
F1 ${ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	40.97 (2)
F1ii ${ }^{\text {ii }} \mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	40.97 (2)
$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	149.72 (5)
$\mathrm{C} 1^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	133.47 (4)
$\mathrm{C} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	100.60 (5)
Ga1 ${ }^{\text {i }}$-K1-K1 $1^{\text {vi }}$	59.882 (9)
$\mathrm{Ga} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{vi}}$	59.882 (9)
Ga 1 -K1-K1 $1^{\text {vi }}$	109.329 (11)
$\mathrm{K} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	60.0
$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{vi}}$	60.0
Ga1-F1-K1	119.32 (4)
$\mathrm{Ga} 1-\mathrm{F} 1-\mathrm{K} 1^{\text {i }}$	119.32 (4)
$\mathrm{K} 1-\mathrm{F} 1-\mathrm{K} 1^{\text {i }}$	98.07 (5)
Ga1-F1-K1 ${ }^{\text {ii }}$	119.32 (4)
$\mathrm{K} 1-\mathrm{F} 1-\mathrm{K} 1^{\text {ii }}$	98.07 (5)
$\mathrm{K} 1{ }^{\mathrm{i}}$ - $\mathrm{F} 1-\mathrm{K} 1^{\mathrm{ii}}$	98.06 (5)
F1-Ga1-C1 ${ }^{\text {vii }}$	103.38 (8)
F1-Ga1-C1 ${ }^{\text {viii }}$	103.38 (8)
$\mathrm{C} 1^{\text {vii }}-\mathrm{Ga} 1-\mathrm{C} 1^{\text {viii }}$	114.82 (6)
F1-Gal-C1	103.38 (8)
$\mathrm{C} 1{ }^{\text {vii }}-\mathrm{Ga} 1-\mathrm{C} 1$	114.81 (6)
$\mathrm{C} 1^{\text {viii- }}$ - $\mathrm{Ga} 1-\mathrm{C} 1$	114.81 (6)
F1-Ga1-K1	35.407 (11)
$\mathrm{C} 1{ }^{\text {vii }}-\mathrm{Ga} 1-\mathrm{K} 1$	76.52 (8)

sup-4

supplementary materials

$\mathrm{Cl}^{\text {iv }}-\mathrm{K} 1-\mathrm{Ga} 1$	90.69 (5)	C1 ${ }^{\text {viii }}-\mathrm{Ga} 1-\mathrm{K} 1$	94.34 (9)
$\mathrm{C} 1{ }^{\mathrm{v}}$ - $\mathrm{K} 1-\mathrm{Ga} 1$	148.40 (5)	$\mathrm{C} 1-\mathrm{Ga} 1-\mathrm{K} 1$	136.33 (8)
$\mathrm{Ga} 1{ }^{\text {i }}$ - $\mathrm{K} 1-\mathrm{Ga} 1$	112.763 (9)	F1-Ga1-K1 ${ }^{\text {ii }}$	35.408 (11)
$\mathrm{Ga} 1{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{Ga} 1$	112.763 (9)	$\mathrm{C} 1 \mathrm{~V}^{\mathrm{vii}}-\mathrm{Ga} 1-\mathrm{K} 1^{\mathrm{ii}}$	136.33 (8)
F1-K1-K1 ${ }^{\text {i }}$	40.97 (2)	$\mathrm{C} 1{ }^{\text {viii }}-\mathrm{Ga} 1-\mathrm{K} 1^{\text {ii }}$	76.52 (8)
F1 ${ }^{\text {i }}$-K $1-\mathrm{K} 1^{\text {i }}$	40.97 (2)	$\mathrm{C} 1-\mathrm{Ga} 1-\mathrm{K} 1^{\mathrm{ii}}$	94.34 (9)
F1ii ${ }^{\text {ii }}$-K1-K1 ${ }^{\text {i }}$	84.06 (4)	K1-Ga1-K1 ${ }^{\text {ii }}$	60.234 (17)
$\mathrm{C} 1{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	133.48 (4)	F1-Ga1-K $1^{\text {i }}$	35.408 (11)
$\mathrm{C} 1^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	100.60 (5)	$\mathrm{C} 1^{\text {vii }}-\mathrm{Ga} 1-\mathrm{K} 1^{\text {i }}$	94.34 (9)
$\mathrm{C} 1^{\mathrm{v}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	149.72 (5)	$\mathrm{C} 1^{\text {viii }}-\mathrm{Ga} 1-\mathrm{K} 1^{\text {i }}$	136.33 (8)
Ga1 ${ }^{\text {i }}$-K1-K $1^{\text {i }}$	59.882 (9)	$\mathrm{C} 1-\mathrm{Ga} 1-\mathrm{K} 1^{\mathrm{i}}$	76.52 (8)
Ga1 ${ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {i }}$	109.327 (10)	$\mathrm{K} 1-\mathrm{Ga} 1-\mathrm{K} 1^{\mathrm{i}}$	60.234 (17)
$\mathrm{Ga} 1-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	59.884 (9)	$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{Ga} 1-\mathrm{K} 1^{\text {i }}$	60.233 (17)
F1-K1-K1 ${ }^{\text {ii }}$	40.97 (2)	$\mathrm{Ga} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{F} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	84.06 (4)	$\mathrm{Ga} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
F1ii ${ }^{\text {ii }} \mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	40.97 (2)	Ga1-C1-H1B	109.5

Symmetry codes: (i) $x,-y+1,-z+1$; (ii) $-x+1, y,-z+1$; (iii) $x,-z+3 / 2,-y+1$; (iv) $-z+3 / 2, y,-x+1$; (v) $y, x, z-1 / 2$; (vi) $-x+1,-y+1, z$; (vii) z, x, y; (viii) y, z, x.

Fig. 1

